A study on universal round trip time analysis for passenger demand beyond elevator contract capacity by Monte Carlo simulation

Author:

So Albert T.1ORCID

Affiliation:

1. Faculty of Arts, Science and Technology, University of Northampton, UK; Asian Institute of Built Environment, Kowloon, Hong Kong

Abstract

The traditional elevator system design practice is to calculate the round trip time (RTT) and associated parameters of pure incoming traffic during up-peak, followed by real-time computer simulation. Recent studies indicated that the normal traffic is much more complicated, consisting of a mixture of incoming, outgoing and interfloor patterns. A major breakthrough to analytically calculate the Universal RTT, under such complicated traffic patterns, emerged 6 years ago based on an appropriate origin-destination matrix describing the passenger transit probability. That genesis model played safe by assuming that the total number of passengers demanding service within one round trip is limited elevator contract capacity, which is in line with the traditional up-peak incoming RTT formulae. In this article, such assumption is removed and the study is based on Monte Carlo simulation. It is found that there is room for enhancing the handling capacity, up to two times the contract capacity, by not sacrificing the RTT and average passenger transit time by too much. This phenomenon, that is, total passenger demand beyond contract capacity, is only valid under the existence of multiple entrance floors and/or mixed traffic conditions. This approach may prevent oversizing the design which could be more realistic. Practical applications: Elevator system designers, according to ISO 8100:32:2020 and CIBSE Guide D: 2020, are recommended to carry out calculation of the RTT and related parameters before any real-time computer simulation. This practice has been adopted by the elevator industry for decades. However, conventional RTT evaluation is mainly on pure incoming traffic during up-peak. The Universal RTT calculation method developed in 2014–15 extended RTT evaluation to cover dominant and complicated traffic patterns of modern buildings, but the assumed number of passengers to be handled within one round trip was limited to the contract capacity of the elevator. This article further removes this limitation to evaluate the limit of handling capacity with reasonable RTT and average passenger transit time. Then, the Universal RTT method could be more realistic and rolled out, and prevent oversizing the system design.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3