Experimental evaluation of desiccant dehumidification and air-conditioning system for energy-efficient storage of dried fruits

Author:

Mahmood Muhammad H1,Sultan Muhammad1ORCID,Miyazaki Takahiko23

Affiliation:

1. Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan

2. Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan

3. International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan

Abstract

The ideal storage zones of dried fruits in comparison with dried foods and feeds are established on the psychrometric chart. The study investigates the combined effect of the desiccant dehumidification and Maisotsenko-Cycle evaporative cooling for the dried fruits storage. Two configurations of desiccant air-conditioning systems (S-I and S-II) are proposed, and their performance is evaluated under the ambient conditions of Fukuoka, Japan. It is established on the basis of parametric and thermodynamic analysis of both the system configurations (S-I and S-II) that S-II could yield better system performance. The psychrometric evaluation of S-II revealed that it can provide the optimal conditions for the storage of dried fruits at low regeneration temperature. However, modification in the proposed system configuration (S-II) is suggested for the storage of dried foods and feeds. Practical application: Conventional dehumidification and air-conditioning options are either expensive or inefficient for dried fruit storage buildings. The study provides a way forward of using thermally driven desiccant systems which are energy-efficient and environment-friendly. Worldwide, the building industries are actively involved in the development of such systems but their application for dried fruit storage buildings are not explored in detail. Therefore, the study provides thermodynamic details of dried fruits storage in relation with experimental evaluation of desiccant and evaporative cooling systems. Provision of such systems to the storage buildings will provide distinct control of humidity and temperature for optimal storage.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3