Comparison of multi-year and reference year building simulations

Author:

Kershaw T.1,Eames M.2,Coley D.2

Affiliation:

1. Centre for Energy and the Environment, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK,

2. Centre for Energy and the Environment, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK

Abstract

Buildings are generally modelled for compliance using reference weather years. In the UK these are the test reference year (TRY) used for energy analysis and the design summer year (DSY) used for assessing overheating in the summer. These reference years currently exist for 14 locations around the UK and consist of either a composite year compiled of the most average months from 23 years worth of observed weather data (TRY) or a single contiguous year representing a hot but non-extreme summer (DSY). In this paper, we compare simulations run using the reference years and the results obtained from simulations using the base data sets from which these reference years were chosen. We compare the posterior statistic to the reference year for several buildings examining energy use, internal temperatures, overheating and thermal comfort. We find that while the reference years allow rapid thermal modelling of building designs they are not always representative of the average energy use (TRY) exposed by modelling with many weather years. Also they do not always give an accurate indication of the internal conditions within a building and as such can give a misleading representation of the risk of overheating (DSY). Practical applications: An understanding of the limitations of the current reference years is required to allow creation of updated reference years for building simulation of future buildings. By comparing the reference years to the base data sets of historical data from which they were compiled an understanding of the benefit of multiple simulations in determining risk can be obtained.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3