Indoor overheating and mitigation of converted lofts in London, UK

Author:

Li Xiaoyi1,Taylor Jonathon1ORCID,Symonds Phil1

Affiliation:

1. UCL Institute for Environmental Design and Engineering, The Bartlett School Environment, Energy & Resources, University College London (UCL), London, UK

Abstract

In the UK, there has been an increase in the number of loft conversions, driven by demands for increased floor areas of dwellings to accommodate more individuals or increase property values. While rooms directly underneath roofs are known to have increased overheating risks, there is little research available that quantifies this risk, and how to mitigate it cost-effectively. This paper seeks to evaluate overheating risks in loft conversions, using integrated environmental solutions virtual environment to dynamically simulate indoor temperatures in a semi-detached dwelling in London, UK, under current and future (2050s and 2080s medium and high emissions) climate scenarios. Adaptive overheating risk and energy consumption are calculated with and without passive overheating adaptations that reduce solar gains, increase ventilation, or add thermal insulation. Marginal abatement cost curves (MACC) are then used to select the most cost-effective adaptations based on installation and ongoing energy consumption costs. Results estimate 11,340–12,210 more summertime Category I overheating degree-hours for the loft than conventional bedrooms in the dwelling under the current climate; total category I loft overheating degree-hours may increase to 20,319 by 2080. While external shutters and night-purge ventilation were the most effective at reducing overheating degree-hours (96% and 89%, respectively), the most cost-effective solutions considering capital and ongoing costs are ventilation strategies, including night-time purge ventilation, advance ventilation and cross ventilation. Passive adaptations are not capable of eliminating overheating entirely, and by the 2080s active cooling is likely to be required to maintain comfortable indoor conditions in lofts. Practical application: Converted lofts – present in 5.8% of English and 10.8% of London dwellings – are at significantly elevated risk of high indoor temperatures relative to conventional rooms. Passive adaptations such as ventilation and shading can effectively mitigate loft overheating until around 2080, after which active measures become necessary. When capital and ongoing costs are considered, the most cost-effective heat mitigating adaptations are night and advance ventilation and internal curtains/blinds. Heat mitigating adaptations for converted lofts should become mandatory, and such spaces should not be occupied by the vulnerable or elderly during hot weather.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3