Mitigating Overheating Risks for Modern Flats in London Due to Climate Change

Author:

Jariwala Mansi1,Taki Ahmad1ORCID

Affiliation:

1. Leicester School of Architecture, De Montfort University, Leicester LE1 9BH, UK

Abstract

With the increase in global temperatures, a significant threat of overheating has been reported due to more frequent and severe heatwaves in the UK housing stock. This research analyzes dwellings’ physical attributes through overheating assessments and their adaptation for modern flats in London in the current (2022) and anticipated (2050) weather. According to preliminary research, Southeast and London in England, mid-terraced, and flats (especially built post 2012), among other archetypes, were discovered to be the most susceptible to overheating in the UK. This study employed a case study of a 2015 modern flat located in a high-risk overheating zone in London to understand the building’s overheating exposure. A range of Dynamic Thermal Simulations (DTS) was conducted using EnergyPlus with reference to case studies in order to assess the performance of passive cooling mitigation strategies (PCMS) on peak summer days (15 July) as well as during the summer against CIBSE Guide A and ASHARE 55. Reduced window area and LoE triple glazing were identified as excellent mitigation prototypes, in which solar gains through exterior glazing were reduced by 85.5% due to triple glazing. Zone sensible cooling was reduced by 52%, which minimized CO2 emissions. It was also identified that the final retrofit model passed CIBSE Guide A by achieving a temperature threshold of 20 °C to 25 °C during the summer months, whereas it failed to accomplish the ASHARE 55 criteria (20–24 °C). The outcome of this study justifies the necessity of tested PCMS and advises UK policymakers on how to foster resilient housing plans to overcome overheating issues.

Funder

Multidisciplinary Digital Publishing Institute

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference50 articles.

1. DEFRA (2022). UK Climate Change Risk Assessment.

2. MetOffice (2018). UKCP18 Guidance: Representative Concentration Pathways.

3. Bouhi, N., Edwards, M., Canta, A., Fielding, V., Chikte, S., and Reynolds, J. (2022). Addressing Overheating Risk in Existing UK Homes, Climate Change Committee. Research Report.

4. CIBSE—TM59 (2017). TM59: Design Methodology for the Assessment of Overheating Risks in Homes, CIBSE.

5. BRE (2016). Guidence on Overheating in Dwellings, BRE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3