Ballistic Impact of Textile Structures

Author:

Roylance David1,Wilde Anthony1,Tocci Gregory1

Affiliation:

1. Polymers and Composites Division, Army Makrials and Meckanics Research Center, Watertown, Massachuestts 02172, U. S. A.

Abstract

Previous work on transverse impact of single textile fibers is reviewed and extended to model orthogonal weaves in which fiber crossovers are simplified as pin. joints. A dynamic finite-element computer technique previously developed for single fibers is extended to model the woven panel, and this method is shown to produce results which are in sub stantial agreement with experimental observations of ballistic nylon panels. Impact of a woven textile panel is shown to exhibit substantial differences compared to the equivalent impact of a single fiber, primarily in that the propagating strain waves experience pervasive and complex interactions due to the influence of the fiber crossovers. The vast majority of ballistic energy is seen to be deposited in the orthogonal fibers passing through the impact point, while the other fibers are essentially ineffective, which suggests possible improvements in the design of textile structures intended for dynamic impact applications.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3