Analysis of the multi-filament high-performance yarns’ dynamic failure for impact resistance enhancement

Author:

El Messiry Magdi1ORCID,Eltahan Eman1ORCID,Fathy Shereen1

Affiliation:

1. Textile Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt

Abstract

The dynamic failure behavior of multifilament high-performance yarns plays a crucial role in determining the impact resistance of advanced materials used in diverse applications such as aerospace, automotive, and protective textiles. The falling tower setup was designed to investigate the impact behavior of high-performance yarns. These models offer valuable insights into the fundamental mechanisms governing yarn failure. The force-time curves of different yarn samples under various impact energies show that Kevlar and Vectran® have the highest values of impact-resisting force, 21.9 and 21.6 N, respectively. The resisting impact energy reaches between 3.5 and 4 mJ. Enhancement of the multifilament yarn’s impact resistance was achieved through applications of silicone finishes or hybrid yarns, in which the impact resistance force and time to failure exhibited an increase across various yarn types. The ratio of impact yarn resisting force to yarn tenacity was determined to be 6.73%, 6.05%, 11.29%, and 1.71% for Vectran, Kevlar 29, polyester, and carbon yarns, respectively. Additionally, their specific yarn impact toughness was measured at 2.69, 1.32, 0.54, and 0.16 mJ/tex. The application of a 20% silicon coating increased their specific yarn impact toughness to 11.81, 5.79, 3.58, and 0.51 mJ/tex, respectively. Hybrid continuous fibers are composite materials that blend various fiber types, including carbon, Kevlar, Vectran®, or polyester, to form a material with enhanced impact absorption energy, such as in the case of Kevlar/PET or Carbon-PET. The outcomes of these investigations substantially contribute to enhancing multi-filament high-performance yarns in various practical applications in systems subjected to dynamic loads.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3