Improved Abrasion Resistance Through Internal Lubrication

Author:

Chipalkatti V.B.1,Sattur N.B.1,Husain I.1,Bajaj P.1

Affiliation:

1. School of Cellulose Research, Shri Ram Institute for Industrial Research Delhi-7, India

Abstract

, The cross-linking reaction of cellulose with lauroyl and stearoyl ester is described. With increasing number of carbon atoms in the ester substituent, the reactivity and wet crease recovery decreased. There is an improvement in tear and abrasion resistance and, with stearoyl ester, a remarkable improvement (5 to 20 times) in flex abrasion resistance. The tear resistance, however, is improved only to the extent of 10% to 50%. By using a modified microscopic count technique and a polarizing microscope, it is shown that the cellulose is cross-linked. The degree of insolubility in cuprithylene diamine is proportional to the degree of cross-linking. Bulk scale application of stearoyl dichloropropanol (DCP) to two fabrics, viz, medium and superfine poplins, has been done. An improvement in abrasion resistance of about 500% to 800% and tear resistance of 20% to 50% has been recorded. The finish is stable to mild laundering, boiling 0.5 N aqueous caustic soda, and boiling 0.5% non-ionic detergent. However, boiling solutions of soap (0.5%) and soda (0.2%) hydrolyze the ester-link, though the cross-linking is still unaffected. The treated fabrics are suitable base materials for wash-wear treatment and it is possible to obtain wash-wear fabrics with abrasion resistance equivalent to or higher than the starting material. Some data on field wear trials of SDCP-treated fabrics are presented and discussed. It is concluded that the idea of providing internal or built-in lubrication by the use of three carbon cross links, with a bulky substituent at the center, may open up a new approach to enhance the abrasion resistance of cotton and other cellulosic textiles.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3