Modeling of fibrous tow transmission considering residual strain and friction

Author:

Che Jinkai1ORCID,Zhang Zengmeng12ORCID,Hou Jiaoyi12,Chen Yinglong13,Gong Yongjun23

Affiliation:

1. College of Naval Architecture and Ocean Engineering, Dalian Maritime University, China

2. Liaoning Provincial Key Laboratory of Rescue and Salvage Engineering, Dalian Maritime University, China

3. International Joint Research Center for Subsea Engineering Technology and Equipment, Dalian Maritime University, China

Abstract

This study established a mechanical model based on the mechanical properties of fibrous tows and their force of interaction with spools. The proposed model not only describes the hysteresis, nonlinear elastic, and viscoelastic stress components, but also analyzes the effect of residual strain on aramid fiber mechanical properties. Moreover, the effect of the interaction force between the fiber and spool on the transmission accuracy should be considered. Contrary to the conventional view, hysteresis is caused not only by internal sliding among molecules and molecular chains but also by friction between the fibers and spools. To assess this effect, several monotonous and cyclic tensile tests were conducted, with the results showing that the maximum relative error of the mechanical model did not exceed 5%. The proposed mechanical model can help designers determine effective carrying ranges and predict the fiber mechanical behavior, thereby laying a foundation for achieving nonlinear control of the fibrous tow transferring load.

Funder

the Science and Technology Innovation Fund Project of Dalian

the Fundamental Research Funds for the Central Universities of China

Natural Science Foundation of Liaoning Province

National Natural Science Foundation of China

National key research and development programme

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3