An efficient virtual modeling regard to the axial tensile and transverse compressive behaviors of the twisted yarns

Author:

Wang Yu123ORCID,Jiao Yanan12,Wu Ning12ORCID,Xie Junbo12,Chen Li12ORCID,Wang Peng3ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Institute of Composite Materials, Tiangong University, Tianjin, China

2. School of Textile Science and Engineering, Tiangong University, Tianjin, China

3. Laboratoire de Physique et Mécanique Textiles (LPMT), École Nationale Supérieure d’Ingénieurs Sud-Alsace (Ensisa), Université de Haute-Alsace, Mulhouse, France

Abstract

The mechanical properties of yarns have a decisive effect on the performance of fiber-reinforced composite materials. Predictive simulations of the mechanical response of yarns are, thus, necessary for damage evaluation and geometric reconstruction of textiles. This paper proposed a quasi-fiber scale virtual modeling method regard to the axial tensile and transverse compressive behaviors of the twisted yarns. A stochastic properties model of the yarn was established for characterizing the statistical distribution of tensile strength. The variation of modeling parameters, including coefficient of friction, the amounts of virtual fibers per yarn and element length, versus calculation accuracy has been determined based on axial tensile and transverse compressive behavior of quartz fibers. The relationship between modeling parameters and mechanical behavior of yarn was established within the scope of this study. Axial tensile and transverse compressive behavior of yarns with different twists were predicted. The results show that balance between the modeling precision and computational efficiency can be achieved using the parameters, the COF of 0.35, virtual fiber count of 122 and Le of 0.3. This efficient modeling method is meaningful to be developed in further virtual weaving research.

Funder

China Scholarship Council

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3