The Luminous mechanism of Eu2+ and Dy3+ co-doped long persistent luminous fiber

Author:

Guo Xuefeng12ORCID,Zhang Keqin1,Ge Mingqiao3

Affiliation:

1. College for Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, China

2. Department of Textile Chemistry Engineering, Key Laboratory of New Material, Changzhou Textile Garment Institute, China

3. College of Textiles and Clothing, Key Laboratory of Eco-Textile Ministry of Education, Jiangnan University, China

Abstract

Fiber-forming polymer polyethylene terephthalate chips were blended with Eu2+ and Dy3+ co-doped SrAl2O4 (SAOED) to afford luminous fiber with long and persistent afterglow. A dynamical model was set up to study the afterglow process in order to correlate the afterglow characteristics with the trap levels of SAOED and luminous fiber. The results indicated that the illustration of initial afterglow for luminous fiber was obviously lower than that of SAOED, but its decay process was moderately slow and therefore longer than that of SAOED. Compared with SAOED, the thermo-luminescence peak of the fiber shifted to the higher temperature, and its intensity was lower than that of SAOED. With the time extension of delay time after excitation, the depth of trap level for luminous fiber in our studies did not show any significant change. The afterglow decay behavior can be best fit by using I =  I0/(1 +  bt)2; the fitting showed that the afterglow decay process followed the second order dynamics.

Funder

Jiangsu QingLan Project Young Academic leaders

Jiangsu 333 Science Funded Project

China Postdoctoral Science Foundation

the Jiangsu Province Postdoctoral Science Funded Project

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3