Preparation and photochromic properties of phosphomolybdic acid/rare earth strontium aluminate luminous fiber

Author:

Li JingORCID,Tang Sisi,Ge MingqiaoORCID,Zhu Yanan,Yu Yuan

Abstract

Abstract In this study, we intend to obtain a novel luminous fiber with colour-tuned luminescence via the photoelectron transfer of a phosphomolybdic acid pigment (PAP). The luminous fiber include the SrAl2O4: Eu2+, Dy3+ materials as the luminescence sources, a solid solution of PAP and polyvinyl alcohol as the photoinitiator, amino silicone resin (ASR) as the surface-modified film-forming material and polypropylene (PP) as the matrix, which are prepared by the melt spinning method. The surface morphology was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV–vis) spectroscopy, photoluminescence emission spectroscopy, and CIE-1931 chromaticity coordinates. Thus, promising results were obtained, which denoted that the luminescence colour of the luminous fibers could transform from yellow–green to blue by adjusting the PAP concentration. The PL emission spectra of these luminous fibers consisted of two emission peak regions in the range of 430–530 nm. The intensity of the two emission peaks in the fiber reaches the maximum when the concentration of the PAP was 50%. Further, the fibers gradually turned blue with luminescence decay when the fiber was placed in a dark place. The existence of photosensitive discoloration was found to be directly related to the amino groups embedded in the silicone resin coated with the luminous surface material, which reacted with PAP to develop phosphorous molybdenum blue via the photo-reduction process. These findings provide valuable insights toward developing next-generation luminescent materials and multicolor luminous fibers.

Funder

National Natural Science Foundation of China

the Open Project Program of Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University

the Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University

K.C. Wong Mangna Fund in Ningbo University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3