Objective rating of fabric wrinkles via random vector functional link based on the improved salp swarm algorithm

Author:

Zhou Zhiyu1ORCID,Ma Zijian1,Zhu Zefei2,Wang Yaming3

Affiliation:

1. School of Information Science and Technology, Zhejiang Sci-Tech University, Zhejiang Sci-Tech University, China

2. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou Dianzi University, China

3. Lishui University, Lishui University, China

Abstract

To solve the problem of inefficiency and inaccuracy associated with the classification of fabric wrinkles by human eyes, as well as improve current deficiencies in the application of neural networks for the classification of fabric wrinkles, we propose a model based on the salp swarm algorithm improved by ant lion optimization to optimize the random vector functional link to objectively evaluate the fabric wrinkle level. First, to improve the global searchability of the salp swarm algorithm and avoid the local optima problem, the use of ant lion optimization to improve the salp swarm algorithm is proposed in this study. Afterward, the improved salp swarm algorithm is used to optimize the input weight and hidden layer bias of the random vector functional link to avoid the inaccuracy and instability of random vector functional link classification owing to the randomness of the parameters. Finally, the performance of the proposed algorithm is verified using a fabric wrinkle dataset. Comparative experiments show that the classification accuracy of the proposed ant lion optimization - salp swarm algorithm - random vector functional link algorithm were 8.46%, 2.05%, 10.28%, 3.50%, and 4.42% higher than those of random vector functional link, improved random vector functional link based on salp swarm algorithm, extreme learning machine, improved extreme learning machine based on whale optimization algorithm, and improved backpropagation based on the Levenberg-Marquardt algorithm. Furthermore, the classification accuracy of the wrinkle level was effectively improved. All the fabrics used in this study were monochromatic, and multi-color printed fabrics have a significant impact on the difficulty of image processing and classification results. The next research step is to evaluate the wrinkle level of multi-color printed fabrics.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3