Classification and recognition of the Nantong blue calico pattern based on deep learning

Author:

Sun Ke-Ke1ORCID,Huang Jing-Wan1,Yuan Yu-Yang2,Chen Ming-Yue1

Affiliation:

1. School of Design Art, Xiamen University of Technology, Xiamen, Fujian Province, China

2. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, Fujian Province, China

Abstract

The Nantong blue calico pattern is a significant and indispensable part of China’s intangible cultural heritage, representing an artistic form of weaving and dyeing. However, existing research on blue calico patterns is not extensive, and few studies have focused on the construction of a database categorizing them or on recognizing the Nantong blue calico pattern. Obtaining good efficiency and accuracy through manual recognition has been the primary challenge in recognizing the Nantong blue calico pattern. In light of these challenges, this study proposes the use of deep learning network model to intelligently classify and recognize blue calico patterns.First, the patterns are classified to establish a Nantong blue calico pattern database, and the corresponding category labels are then manually assigned to each image. Second, based on the database and a backbone feature extraction network, the abilities of SSD (Single Shot Multibox Detector), Faster RCNN (Region-CNN), and You Only Look Once (to recognize the Nantong blue calico pattern were compared. The results show that the SSD model based on a VGG (Visual Geometry Group) backbone network has the best recognition accuracy of these three algorithms, with an average accuracy of 79.42%. On this basis, we selected the SSD model for parameter optimization and adjustment, and we replaced the backbone with mobilenetv2, a lighter backbone extraction network, to recognize the Nantong blue calico pattern. The results show that compared with the original SSD model, the optimized SSD model can improve the pattern recognition rate of Nantong blue calico pattern. Furthermore, this paper makes use of the characteristics of the VGG deep network, the backbone network of the SSD model, to efficiently extract the features of blue calico patterns, which provides a basis for designers to design innovative blue calico patterns.

Funder

Natural Science Foundation of Fujian Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3