Experimental determination of in-plane permeability of nonwoven thin fibrous materials

Author:

Zhuang Luwen12ORCID,Hassanizadeh S Majid23,Qin Chao-Zhong4

Affiliation:

1. School of Civil Engineering, Sun Yat-sen University, China

2. Department of Earth Sciences, Utrecht University, The Netherlands

3. Stuttgart Center for Simulation Science (SIMTECH), Stuttgart University, Germany

4. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, China

Abstract

Knowledge of hydraulic properties is crucial for understanding and modeling fluid flow in thin porous media. In this work, we have developed a new simple custom-built apparatus to measure the intrinsic permeability of a single thin fibrous sheet in the in-plane direction. The permeability was measured for two types of nonwoven thin fibrous porous materials using either the water or gas phase. For each layer, the measurements have been done for different combinations of flow direction and fiber orientation. The permeability values measured using gas and water were approximately close to each other. The permeability of the two samples was found to be anisotropic and the principal permeabilities were determined based on the measurements.

Funder

Deutsche Forschungsgemeinschaft

Science and Technology Project in Guangzhou

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3