Capillary pressure–saturation curves of thin hydrophilic fibrous layers: effects of overburden pressure, number of layers, and multiple imbibition–drainage cycles

Author:

Tavangarrad Amir Hossein1ORCID,Hassanizadeh S. Majid1,Rosati Rodrigo2,Digirolamo Luigi2,van Genuchten Martinus Th13

Affiliation:

1. Department of Earth Sciences, Environmental Hydrogeology Group, Utrecht University, The Netherlands

2. Procter & Gamble Service GmbH, Germany

3. Center for Environmental Studies, CEA, São Paulo State University, Brazil

Abstract

Unsaturated fluid flow in thin porous media depends on hydraulic properties, such as the capillary pressure, P c, as a function of saturation, S. We measured this relationship for two different types of compressible thin hydrophilic fibrous layers under varying conditions. Among other factors, we changed the number of layers and the overburden pressure (i.e. the confined solid pressure applied on top of the sample) imposed on one layer or a stack of layers. Applying an overburden pressure drastically affected the [Formula: see text] curves. However, increasing the number of fibrous layers had little impact on the capillary pressure–saturation curves. We also investigated the effect of multiple imbibition–drainage cycles on the [Formula: see text] data. Measured data points were used to find general expressions for the [Formula: see text] relationships of compressible thin porous media. Existing quasi-empirical correlations used in vadose zone hydrology, notably expressions by van Genuchten (Van Genuchten MTh. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 1980; 44: 892-898) and Durner (Durner W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res 1994; 32: 211–223) for single- and dual-porosity media, respectively, were employed to fit the measured data points.

Funder

European Research Council under the European Union's Seventh Framework Program (FP/2007-2013)

Procter and Gamble

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3