Experimental study of welding region effects on upward flame spread over textile membranes

Author:

Gao Yunji1,Zhu Guoqing1ORCID,Yu Mengwei1,Guo Feng1,Xia Yu1,An Weiguang1

Affiliation:

1. Department of Fire Protection Engineering, China University of Mining and Technology, Xuzhou, PR China

Abstract

Textile membranes are used widely as a main architectural material in membrane structure buildings. However, very few studies have been conducted to investigate the flame spread characteristics of textile membranes, especially in the case of upward flame spread. In this paper, the effects of welding region on upward flame spread were investigated experimentally using sample sheets of textile membranes 60 cm tall and 6 cm wide with and without welding region. The corresponding observations are as follows: the width of flame with welding region is narrower than that without welding region; flame height, pyrolysis height, preheating length, flame length, and pyrolysis spread rate decrease significantly in the presence of a welding region, while ignition time increases; flame temperature decreases in the presence of a welding region, and temperature along the welding region is higher than that near the edge. The welding region effects are as follows: in presence of a welding region, the thickness of welding region increases and, accordingly, ignition time shows an increase, leading to relatively low pyrolysis gas generated per unit time and relatively less heat released; in addition, a relatively larger pyrolysis gas concentration gradient over the width for welding membranes results in a relatively stronger air entrainment occurring at the sample sides, taking away part of the heat flux and narrowing the flame width. Thus, the presence of a welding region has negative effects of increasing ignition time and reducing preheating length on upward flame spread over textile membranes, eventually decreasing the pyrolysis spread rate.

Funder

Fundamental Research Funds for the Central Universities

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3