Numerical simulation and experiment verified for heat transfer processes of high-property inorganic fiber woven fabrics

Author:

Liu Tianjiao1ORCID,Chen Meiyu2ORCID,Dong Jie2,Sun Runjun2,Yao Mu2

Affiliation:

1. College of Textile and Clothing Engineering, Soochow University, China

2. School of Textile Science and Engineering, Xi’an Polytechnic University, China

Abstract

Numerical simulation is an effective method to study the heat transfer of fabric. However, the interlaced structure of the woven fabric deforms warp yarns and weft yarns to varying degrees, so it is not easy to obtain an effective model of the fabric and the effective thermophysical parameters of the yarns. In addition, at a high temperature, the anisotropy and temperature-dependent property of the thermal conductivity of the yarn also need to be considered. Therefore, this work established a transient heat transfer simulation model based on the effective woven fabric structure and the effective thermophysical parameters of yarns to study the heat transfer processes of three kinds of high-temperature-resistant inorganic fiber (quartz fiber, high-silica glass fiber and basalt fiber) fabrics at different temperatures (especially high temperature). The fabrics were embedded in epoxy resin and made into slices, and then cross-sectional slices of the woven fabrics were observed through a three-dimensional microscope to construct the fabric geometric models. Taking into account the influence of warp yarn and weft yarn deformations in the fabric structure on the fiber volume fractions and the anisotropic and temperature-dependent property of thermal conductivities of the yarns, the thermophysical parameters of warp yarns and weft yarns in the woven fabrics were optimized. Then the fabrics were simulated for transient heat transfer at different temperatures (373.15, 573.15 and 773.15 K). The simulation results were verified through experiments. The good correlation between the two results proved the effectiveness of the simulation method.

Funder

Education Department of Shaanxi Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3