Evaluation of Insulation against Contact Heat, Radiant Heat and Sensory Comfort of Basalt Fabric-Based Composites with Parylene C Coating

Author:

Tokarska Magdalena1,Miśkiewicz Pamela1,Puszkarz Adam K.2,Nosal Andrzej3

Affiliation:

1. 1 Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles , 116 Zeromskiego St. , Lodz , Poland

2. 2 Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Material Science of Textiles and Polymer Composites , 116 Zeromskiego St. , Lodz , Poland

3. 3 Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Materials Science and Engineering , 1/15 Stefanowskiego St. , Lodz , Poland

Abstract

Abstract The article concerns research on using Parylene C coating on basalt fabric-based composites with potential use in protective clothing to improve their insulation against contact heat and radiant heat, as well as the sensory comfort of the user. The outcomes of the contact heat method showed that applying Parylene C coating improved the thermal insulation of all tested composites. Two of them achieved the first efficiency level of protection. The results of the radiant heat method presented that using the Parylene C coating did not cause changes in the thermal insulation against heat radiation of all tested materials; the radiant heat transfer index reached values in the range of 12.4 - 12.9 s. X-ray tomography (micro-CT) allowed for identifying breaks/snaps in basalt fibers irritating the user’s skin in direct contact with the composite. Micro-CT results also showed that using Parylene C coating eliminated the effect of skin irritation and increased the usability of basalt fabrics in clothing.

Publisher

Walter de Gruyter GmbH

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3