Affiliation:
1. Institute for Frontier Materials, Deakin University, Australia
2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University (WTU), China
Abstract
Improving ring spinning efficiency and yarn quality is still challenging due to the sliding friction heat generated by the ring/traveler system, which limits the traveler speed and the yarn production rate. In this study, a finite element model based on the external heat source method was first used to explore the heat transfer process of the ring/traveler system. The reliability of the model was verified empirically. Subsequently, the validated model was used to analyze the effect of the model parameters on the temperature of the ring/traveler system. The results confirm that the high-temperature region of the ring and the traveler was concentrated on their contact area. More specifically the maximum temperature of the traveler was 159.2°C, which was almost three times the maximum temperature of the ring (62.6°C). In addition, smaller frictional coefficient and yarn tension, larger contact area and heat absorption rate, and better thermal conductivity can reduce the high local temperature of the ring/traveler system. Among them, yarn tension, friction coefficient, and heat absorption rate have a significant influence on the system temperature, especially for the small traveler. The developed model is also available for different fiber types and yarn counts which can be used for a comprehensive investigation of the heat transfer in ring spinning processes. The model and results of this study offer a theoretical basis for further optimizing the ring/traveler system and improving the productivity of ring spinning.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献