Sound absorption of woven fabrics produced from braid-reinforced polyvinylidene fluoride hollow fiber membranes

Author:

Zhao Baobao1ORCID,Yang Quan1,Wang Zhen1,Hu Chenggong2,Feng Quan1,Wei Anfang1

Affiliation:

1. School of Textile and Garment, Anhui Polytechnic University, China

2. School of Chemical and Environmental Engineering, Anhui Polytechnic University, China

Abstract

Noise pollution has become one of the four major pollutants in modern society, and the development of acoustical materials with superior noise reduction performance is urgent. In order to develop new and high-performance acoustic materials, braid-reinforced (BR) polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via the dry–wet spinning process and were used to prepare woven fabrics with different basic textures. The effects of pump flux on the structure and performance of BR PVDF hollow fiber membranes was studied. The results showed that pump flux had an impact on the structural parameters, including the diameter, inner coating layer thickness and porosity, and the fabricated BR PVDF hollow fibers with a porous-resonant composite sound absorption structure had good interface bonding performance. Furthermore, the sound absorption of the woven fabrics was measured by using the impedance tube method in frequency range of 100–6300 Hz. The results demonstrated that plain fabric had a smaller thickness of 2.17 mm and better acoustical properties with a maximum sound absorption coefficient of 0.71. These woven fabrics may potentially be used as ideal materials for controlling noise in fields such as building and transportation.

Funder

Research Funds of Anhui Polytechnic University

Open Project Program of Anhui Engineering and Technology Research Center of Textile, Anhui Province College of Anhui Province College Key Laboratory of Textile Fabrics

Pre-Research Project of National Natural Science Foundation

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3