Research progress of piezoelectric polymer PVDF in sound absorption technology

Author:

Li Xiao1ORCID,Zhao Xiaoming123,Liu Yuanjun123

Affiliation:

1. School of Textile Science and Engineering, Tiangong University, China

2. Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, China

3. Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, China

Abstract

Owing to its impedance properties and piezoelectric effect, the piezoelectric polymer polyvinylidene fluoride (PVDF) finds application in the field of noise control. Traditional sound-absorbing materials have gradually fallen short of the demands of sound-absorbing functionality and environmental adaptability in today’s increasingly acute noise pollution environment. When PVDF is added to sound absorption, materials or structures have an additional loss path for the conversion of sound energy to electric energy. This helps to increase the low-frequency sound absorption band and improve low-frequency sound absorption performance. Through the action of viscosity, friction, relaxation, piezoelectric effect, and dielectric loss, the sound energy in the passive sound-absorbing material containing PVDF is transformed into energy dissipation in the form of heat energy, electric energy, and so on under the matching of PVDF low impedance. In active control, secondary sound and force sources can be supplied by PVDF-based transducers and actuators to reduce noise. This paper first provides an overview of the piezoelectric characteristics of β-phase PVDF and its optimization techniques. It then goes on to discuss the use of PVDF in passive sound-absorbing materials, active controls, and hybrid sound absorption systems. Finally, it summarizes the benefits, issues that still need to be resolved, and future directions for these three noise reduction techniques.

Funder

Chinese Academy of Engineering consulting project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3