A dynamic modeling approach for a high-speed winding system with twin-rotor coupling

Author:

Hou Xi12,Wang Yongxing13ORCID,Feng Pei1,Yu Haiyan1,Ma Xunxun1,Chen Ge1

Affiliation:

1. College of Mechanical Engineering, Donghua University, China

2. Wuxi Hongyuan Electromechanical Technology, China

3. Engineering Research Center of Advanced Textile Machinery, Ministry of Education, China

Abstract

This paper continues the previous study and presents a dynamic modeling approach for a high-speed winding system. To meet the requirements of high-speed winding, a twin-rotor coupling structure is adopted in the winding system. It is a complex spindle system, due to its high speed, heavy load, frequency-dependent coupling parameters, and time-varying rotational speed. In this paper, an approach to establishing a finite element model of the winding system is proposed to predict its dynamic behavior characteristics during the winding process. First, the spindle and contact roller models of the discrete single component are developed based on Timoshenko beam theory. Bending, transverse shear effects, and gyroscopic moment are considered in the models. The contact stiffness between the contact roller and the packages to be wound on the spindle is simplified by a nonlinear spring. The contact stiffness is identified by dynamics analysis in ANSYS® 17.0. Next, a fully dynamic model of the winding system, which consists of the spindle subsystem, the contact roller, and the flexible coupling elements, is established. Third, the Newmark method is used to develop the program to solve the dynamic equations in MATLAB® 2013b. Finally, the effects of the supporting system and contact state on the winding system's dynamic response are investigated. The results indicate the model of the winding system presented in this paper is suitable for predicting dynamic performance during the winding process.

Funder

the Natural Science Foundation of Shanghai

the Applied Foundation Research of China National Textile and Apparel Council

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3