A dynamic modeling approach to the moving filament during high-speed winding by absolute nodal coordinate formulation

Author:

Li Shujia12ORCID,Ma Xunxun1,Hou Xi3,Wang Shengze12,Wang Yongxing12ORCID

Affiliation:

1. College of Mechanical Engineering, Donghua University, China

2. Engineering Research Center of Advanced Textile Machinery, Ministry of Education, China

3. China Textile Machinery Association, China

Abstract

During the winding process, the filament moves at a high speed with multiple configurations and large deformations, and is acted upon by winding tension, contact force, transverse force, air resistance, and so on. Accurately predicting the trajectory and tension fluctuation of the filament under the high-speed running condition is the basis for regulating winding parameters and ensuring high-quality winding. This paper proposed a novel dynamic approach for modeling the polyester filament winding system. The filament element was established by absolute nodal coordinate formulation. The nonlinear spring and viscous damper elements were used to establish the contact model between the filament and the mechanical parts, and the mechanical model of the influence of the airflow on the filament was established. Through considering the moving filament and all the force factors, the dynamic model of the multi-body coupling system of the filament winding and the corresponding nonlinear dynamic equation were established, and the dynamic equations were solved using MATLAB. An example of the high-speed winding system was simulated and further analyzed, and the simulated trajectory of the moving filament was highly consistent with the experimental image record.

Funder

The Natural Science Foundation of Shanghai

The National Key R&D Program of China

The Applied Foundation Research of China National Textile and Apparel Council

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3