Affiliation:
1. Tiangong University, Tianjin, China
2. Institute of Munitions Engineering and Technology, Beijing, China
Abstract
The anti-icing property of materials can be influenced by many factors, such as mechanical forces, electrostatic forces, van der Waals interaction and so on. In this research, the effect of thermal conductivity on the anti-icing performance of coated fabrics was studied. An instrument to observe the melting process of the ice on various materials was designed, by which the melting rate of the ice on the samples could be tested. A formula for the variation of the melting rate of the ice on the samples against the thermal conductivity of the samples was deduced using a mathematical method. It was proved that the formula can be used to study the effect of thermal conductivity on the anti-icing performance of coated fabrics. A coated fabric with anti-icing performance was prepared with Nomex IIIA fabrics, PU-2540 (Polyurethane-2540), Teflon emulsion, graphite powder, SiC powder and TG-581 (fluorine-containing water and oil repellent-581) using a knife coating method. The properties of the samples were investigated by using a video optical contact angle measuring instrument (OCA15 Pro), a thermal constants analyzer (TPS2500S, Hot Disk, Sweden), an anti-icing property tester, and other devices. Results show that the coated fabrics prepared in this manner have good performance in ease of ice removal and a low interaction with water and ice, resulting in good anti-icing properties.
Funder
College Students' innovation and entrepreneurship training program of Tianjin
Tianjin Municipal Natural Science Foundation
Science and Technology Commissioner Project of Science and Technology Commission Foundation of Tianjin
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献