Research on planar frequency selective fabrics with Jerusalem-shaped units

Author:

Guan Fuwang12,Xiao Hong13,Shi Meiwu13,Wang Qun4,Yu Weidong12,Wang Fumei12

Affiliation:

1. College of Textiles, Donghua University, China

2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China

3. The Quartermaster Equipment Research Institute of the General Logistic Department, CPLA, China

4. College of Materials Science and Engineering, Beijing University of Technology, China

Abstract

Planar frequency selective fabrics (FSFs) with Jerusalem-shaped units were proposed in this paper. In accordance with the previous work, the design process was specifically for 10 GHz. Through simulation and optimization procedures, the ideal structure parameters were obtained, and the proposed FSFs with optimized parameters showed good stability to differential and integral algorithms, transmission modes and incidence angles of electromagnetic (EM) waves. To further explore the internal EM transmission mechanism of FSFs, the surface currents at 4, 10 and 14 GHz were analyzed comparatively. Based on the simulated results, 10 samples with the polyester fabric substrate were fabricated through the computer-based carving method and the transmission characteristics were tested using the Shielding Room Method. The fabricated FSFs indeed showed good frequency response characteristics, as expected, and the comparison of measured and simulated results verified the validity of the design procedures. The influence rules of structure parameters ( p, a, b, c) were further studied in detail by changing their values properly, and the simplified equivalent circuit model was proposed to explore the corresponding physical mechanism, which could provide physical insight into the performance of the FSFs.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3