Affiliation:
1. College of Textiles and Apparel, Quanzhou Normal University, China
2. College of Education Science, Quanzhou Normal University, China
Abstract
In order to explore the feasibility of preparing frequency selective fabrics by computer embroidery technology, two complementary ring-shaped structures were selected for design in this paper. Several samples with different size parameters were prepared by the computer embroidery process, and the electromagnetic transmission characteristics were systematically tested using the free-space method. The effects of unit type, electromagnetic wave polarization mode, incident angle, unit size parameters and processing methods on different samples were analyzed in depth. The results show the aperture-type and patch-type samples have obvious band-pass and band-stop characteristics in the test frequency range, respectively, but there are some differences in the resonance frequency and peak of the complementary structure samples of the same size. Different parameters have dissimilar influences on the electromagnetic transmission characteristics. With the increase in incident angle, the frequency selective characteristics of two complementary structures are gradually weakened, and the aperture structure has higher angular stability. Under the conditions of different electromagnetic wave polarization modes and incident angles, the computer embroidery samples have good frequency selective characteristics, which demonstrates the effectiveness of computer embroidery processing technology. However, compared with the ideal computer-based carving sample, there is a certain gap in the resonance peak, and the electromagnetic loss is large. The processing accuracy of the computer embroidery technology needs to be explored further.
Funder
Education and Scientific Research Foundation for Middle-aged and Young Scientist of Fujian Province, China
Quanzhou City Science & Technology Program of China
Startup Foundation for Docotors of Quanzhoun Normal University
Innovation and Entrepreneurship Training Project for College Students
Natural Science Foundation of Fujian Province, China
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献