Textile-based directionally antagonistic sound absorber with double gradient structure

Author:

Zhang Chunchun1,Li Huiqin1,Gong Jixian1ORCID,Chen Jiahao1,Li Zheng1,Li Qiujin1,Cheng Meilin1,Zhang Jianfei123

Affiliation:

1. Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, China

2. Collaborative Innovation Center for Eco-Textiles of Shandong Province, China

3. National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, China

Abstract

In the structural design of sound-absorbing materials, how to combine the merits of porous materials with acoustic functional fillers with special structures to improve the sound-absorbing performance of porous materials at low-medium frequencies is a challenging problem. Herein, a directionally antagonistic acoustic textile is proposed as a sound absorber fabricated via single-sided coating. It is found that the sound absorber presents a double gradient structure by controlling the distribution of filler on the porous material frame. Considering the incident plane of acoustic waves, two different paths are defined, namely A–B and B–A (A, coated side; B, uncoated side), under which the sound absorber shows remarkable anisotropic sound absorption. The peak frequency is from 5559 Hz of bare fabric to 3455 Hz of the A–B NWIII (coated nonwoven when sound waves propagate along A–B) sound absorber, showing a significant tendency to move to the lower frequencies. The peak value of sound absorption coefficient of the A–B NWIII is 0.94, indicating a high sound absorptivity. In addition, by adjusting the acoustic functional filler and weaving structure and thickness of the base fabric, the sound absorber exhibits the expected anisotropic sound absorption. The novel sound absorber can be fit for lightweight sound-absorbing applications because of the characteristics of light, soft, high efficiency and broadband sound absorption.

Funder

the National Key Research and Development Project Foundation of China

Science and Technology Guidance Project of China National Textile and Apparel Council

Tianjin Natural Science Foundation

Tianjin Research and Innovation Project for Postgraduate

The Xinjiang Autonomous Region Major Significant Project Foundation

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3