A relative hairiness index for evaluating the securities of fiber ends in staple yarns and its application

Author:

Huang Xinxin12ORCID,Tao Xiaoming2ORCID,Yin Rong23ORCID,Liu Shirui2ORCID

Affiliation:

1. School of Art and Design, Guangdong University of Technology, Guangdong University of Technology, China

2. Institute of Textiles and Clothing, Hong Kong Polytechnic University, The Hong Kong Polytechnic University, China

3. Wilson College of Textiles, North Carolina State University, USA

Abstract

Hairiness is a prominent property of staple yarns, but the existing evaluation parameters mainly describe the fiber ends already protruding out of yarn bodies. The potential fiber ends in yarns also play a crucial role in the performance of yarns in the subsequent processes and the resultant fabric quality. In our previous studies, maximum hairiness and its theoretical model have been proposed, which indicate the maximum fiber ends of a staple yarn having the potential to protrude out of yarn bodies and become hairy. On this basis, the relative hairiness index (RHI) is developed in this study to evaluate the fiber end tucking and securities of yarns. This index is treated as a ratio of the measured hairiness of sample yarns and the maximum hairiness of ring yarns in the same twist level and yarn count. A lower RHI indicates more fiber ends being tucked into yarn bodies, and a slower increment of the RHI with the increasing winding times represents more stable securities of fiber ends in yarns. The experimental results demonstrate that the RHI can directly reveal the effectiveness of different spinning parameters and methods in tucking and securing fiber ends; also, the changes of the RHI with increasing winding times visually present the stableness of fiber ends in various yarns experiencing abrasion, as well as predict the possibility of the potential fiber ends being pulled out to form hairiness during successive processes. The proposed RHI, therefore, provides a significant reference for the spinning process design and yarn quality control.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3