Multi-perspective measurement of yarn hairiness using mirrored images

Author:

Wang Lei1,Xu Bugao12,Gao Weidong1

Affiliation:

1. Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, China

2. Department of Merchandising and Digital Retailing, University of North Texas, USA

Abstract

Most photoelectric and imaging methods for yarn hairiness measurements often provide underestimated data of hairy fibers measured from light projection, which ignores the spatial orientations and shapes of protruding fibers. In this project, a three-dimensional (3D) system was developed to detect hairy fibers from multiple perspectives and to reconstruct a 3D model for the yarn that permits fibers to be traced spatially. The system utilized two angled planar mirrors to view a yarn from five different perspectives simultaneously, and a digital camera to capture the multiple images in one panoramic picture. The image-processing techniques were used to dissect the panoramic picture into five sub-images containing separate views of the yarn, and to segment the sub-images to obtain yarn silhouettes showing the edges of the yarn and hairy fibers. A 3D model of the yarn could be built by merging the five silhouettes with the angles defined by the scene geometry of the dual mirrors. From the 3D model, hairy fibers protruding from the yarn core could be traced in the space for accurate length measurements. The system represents a simple and practical solution for the 3D measurement of yarn hairiness.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Yarn hairiness measurement based on multi-camera system and perspective maximization model;Journal of Electronic Imaging;2024-08-14

2. 3-D Measurement of Yarn Unevenness Based on A Low-Cost Multicamera Collaborative System and Signal Analysis;IEEE Sensors Journal;2024-04-15

3. Measurement of yarn apparent evenness based on modified Canny edge detection;The Journal of The Textile Institute;2023-04-25

4. The Effect of Different Test Speed on Zweigle Yarn Hairiness Results in Selected Yarns;Çukurova Üniversitesi Mühendislik Fakültesi Dergisi;2023-03-30

5. Overview of the cotton roving process & fault detection techniques in yarn;INSTRUMENTATION ENGINEERING, ELECTRONICS AND TELECOMMUNICATIONS – 2021 (IEET-2021): Proceedings of the VII International Forum;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3