Plasmonic silver nanoparticle-decorated electrospun nanofiber membrane for interfacial solar vapor generation

Author:

Liu Ye1,Xiong Jian1,Li Ailin1,Wang Rongwu1,Wang Liming1ORCID,Qin Xiaohong1ORCID

Affiliation:

1. Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, P.R. China.

Abstract

Interfacial solar vapor generation as an emerging technique has great potential in solving water shortage and pollution problems. Electrospun nanofiber membrane with high porosity, mechanical flexibility, numerous microsized channels for fast water transport, and low thermal conductivity offers an ideal platform for solar vapor generation. In this research work, plasmonic silver nanoparticles (Ag NPs) were utilized as photothermal materials and electrospun polyacrylonitrile (PAN) nanofiber membranes as substrates to fabricate Ag nanoparticles-uniformly decorated PAN (Ag@PAN) nanofiber membranes by electroless plating method. The morphology and chemical composition of the membranes were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffractometry. By varying the volume ratios of glucose and silver ammonia solution, the sizes of Ag NPs as well as the light-absorption ability of corresponding nanofiber membrane were regulated. As a result, the optimal Ag@PAN nanofiber membrane demonstrated a high light-absorption efficiency of 92.8% in the range of 280–2500 nm wavelength. The evaporation rate reached 1.34 kg m−2 h−1 and 5.83 kg m−2 h−1 under 1 sun and 5 sun irradiations, respectively. The plasmonic nanofiber membrane also exhibited long-term use stability, without any degradation in solar vapor generation performance even after 10 cycle tests. This work paves the way for the design and development of plasmonic nanofiber membranes as high-performance interfacial solar vapor generators.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3