A Review: Electrospinning Applied to Solar Interfacial Evaporator

Author:

Tang Ruijing1,Ju Jingge1ORCID,Huang Yuting1,Kang Weimin1ORCID

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Separation Membranes School of Textile Science and Engineering Tiangong University Tianjin 300387 P. R. China

Abstract

The emerging solar interfacial evaporation (SIE) technology is an effective measure to address freshwater resources. An efficient and stable solar interfacial evaporator cannot be achieved without the synergy of three key factors: water transport, solar thermal conversion, and thermal management. The performance of a solar interfacial evaporator can be improved through the rational selection of materials and the structural design of these three key factors. Due to superior nanostructures, electrospun nanofibrous materials often exhibit some unique properties that facilitate the construction of solar interface evaporators with good performance. So far, electrospinning has been used to prepare structures such as solar absorbers, water transportation, and thermal insulation in various solar interfacial evaporators. This review presents the fundamental research and technological development in the application of electrospinning techniques to solar interfacial evaporators on structures, morphology, and properties. Then, the latest advances in the use of electrospinning technology in solar interfacial evaporators are summarized and the current issues facing the application of electrospinning technology to solar interfacial evaporators are presented. These systematic discussions can provide ideas and approaches for the rational design of electrospun nanofiber materials for solar interfacial evaporators in the future.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3