Affiliation:
1. The Hong Kong Polytechnic University, Hong Kong
Abstract
Wearable electronics textiles are a new emerging phenomenon. These are textiles that incorporate electrical properties, for example heating, light emitting, sensing, etc., and are now being rapidly developed due to the creation of new types of fibers and fiber composites. The different ways that can be used to combine conductive fibers with electronics components have been receiving much attention in wearable electronics research. However, to meet the requirements for both aesthetics and function, textiles technology and the garment design method are important for commercial success. In order to apply electronics to fabrics with the use of conductive fibers, complex and elastic fabric structures both need to be modeled. Therefore, the focus of this study is to examine the resistance properties of single pique, a fabric that is conductive and has a knitted structure that uses tuck stitches, a typical structure in knitting. A planar geometric model is established for a single pique structure based on the loop construction of this knitted fabric. Subsequently, resistive network models are developed for different cases of external voltages to calculate the resistance values of single pique fabrics with different numbers of wales and courses. Corresponding experiments are carried out to verify the proposed resistive network modeling. The newly developed resistance model in this study will provide significant benefits to the industrialization of wearable electronics textiles and the apparel industry as they can offer commercial apparel products that are not only aesthetically pleasing and multi-functional, but also have high added value.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献