Surface modification of polyimide fibers for high-performance composite by using oxygen plasma and silane coupling agent treatment

Author:

Lu Cheng12,Shao Huiqi23ORCID,Chen Nanliang12,Jiang Jinhua12ORCID

Affiliation:

1. Shanghai Collaborative Innovation Center of High Performance Fibers and Composites, Donghua University, China

2. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, China

3. Innovation Center for Textile Science and Technology, Donghua University, China

Abstract

In this study, the oxygen plasma and silane coupling agent composite treatment was used to modify the polyimide fiber surface to improve the interfacial properties. The oxygen plasma treatment introduced active groups on the fiber surface, which facilitated the grafting of silane coupling agent to the fiber surface. The surface morphology and chemical composition of fibers were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. The results showed that after plasma treatment, the etching spots on the fiber surface increased with the plasma treatment time, and the surface O atom content, O/C ratio and C–O(H) bond ratio reached the highest value at 27 min plasma treatment. After the composite treatment, the surface Si atomic content reached the highest value after 27 min plasma pretreatment. Moreover, polyimide/polyamic acid unidirectional reinforced composites were prepared. In polyimide/polyamic acid composites, the interfacial shear strength of polyimide fibers first increased and then decreased with plasma treatment time, both in oxygen plasma treatment and in composite treatment, and increased by up to 36.98% and 61.68% respectively compared. In addition, the transverse tensile strength of polyimide/polyamic acid composites increased by 103.73% after composite treatment compared with the pristine specimens.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3