Affiliation:
1. School of Textile Science and Engineering, Tiangong University, China
2. Aerospace Research Institute of Materials & Processing Technology, China
Abstract
In order to predict the thermal insulation performance of coated carbon fiber fabric, a numerical heat transfer model under high temperature was established. The simulation results were validated by quartz lamp ablation experiment. The experimental values were in agreement with the numerical values, and the average relative error between them was 9.47%. Furthermore, the impact of structural parameters on the thermal insulation of coated carbon fiber fabrics, by using the numerical heat transfer model, was investigated. The results show that thermal insulation for the samples is in the order of plain < 2/1 twill < 3/3 twill < 5/3 stain, when using constant structure density and yarn fineness. Thermal insulation performance of the samples dramatically increases as yarn fineness goes from 3 to 12 K. Furthermore, when the structure density increases to more than 70 ends/10 cm, the thermal insulation property shows an increasing trend.
Funder
Natural Science Foundation of Tianjin City
the Science & Technology Development Fund of Tianjin Education Commission for Higher Education
the Technical Guidance Project of the China National Textile and Apparel Council
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献