Numerical and experimental analysis on anisotropic thermal conductivity of carding quartz fiber web based on the reconstruction model

Author:

Du Peijian12ORCID,Ding Xiang3ORCID,Liang Qixin4,Chen Xiaoming12,Zhang Yifan12,Chen Li12

Affiliation:

1. School of Textile Science and Engineering, Tiangong University, China

2. Key Laboratory of Advanced Textile Composite Materials, Tiangong University, China

3. Institute for Frontier Materials, Deakin University, Australia

4. Department of Mechanical Engineering, The University of Hong Kong, China

Abstract

In order to analyze the thermal and mechanical properties of the carding quartz fiber web and the needle-punched quartz fiber preform containing the carding quartz fiber web, we propose a ‘three-step’ method to establish a three-dimensional quartz carding fiber web model containing large slenderness ratio fibers. First, the thickness and areal density of the carding quartz fiber web were measured and statistical analysis of fiber length and orientation distribution was carried out, which provided data support for establishing the three-dimensional carding fiber web model. Based on the wide application of Python language in finite element software, then spatial layered fibers of the beam element were generated by running Python scripts in finite element software; second, the three-dimensional carding fiber web model of beam element was established through a deposition and compression process by the explicit method of the finite element software; finally, the three-dimensional carding fiber web model of the beam element was converted into the solid element model for heat transferring analysis by Python. The converted process is the reconstruction process. Furthermore, anisotropic heat transmission of the three-dimensional carding fiber web model that includes temperature distribution and heat flux distribution were analyzed. Meanwhile, anisotropic thermal conductivity of the three-dimensional carding fiber web model was predicted in finite element software. A hot-disk thermal analyzer was used to measure the anisotropic thermal conductivity of the three-dimensional carding quartz fiber web. Experimental anisotropic thermal conductivity showed an excellent agreement with anisotropic thermal conductivity predicted by the finite element method. Moreover, the method in this paper is not only suitable for any other fibrous materials with randomly distributed fibers and large slenderness ratio fibers, but also is more efficient and low cost to obtain detailed heat conductions and anisotropic thermal conductivity.

Funder

University Innovation Team Training Plan of Tianjin

the Major science and technology projects of Tianjin

the Major science and technology projects of Shanxi Province

cientific Research Project of Tianjin Education Commission

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3