Affiliation:
1. College of Mechanical Engineering, Donghua University, China
Abstract
In textile factories, the most typical warp-knitted fabric defects include point defects, holes, and color differences. Traditional manual inspection methods are inefficient for detecting these defects. Existing intelligent inspection systems often have a single function. Factories require a real-time inspection system that can detect common defects and color difference. The YOLO (you only look once) neural network is faster than the two-stage neural network and has lower hardware requirements. The system’s color difference detection algorithm compares the color difference between the standard image and the image to be measured and records where the color difference value is exceeded. Finally, the comparison of the factory application proves that the designed system has good real-time performance and accuracy and can meet the fabric inspection requirements of warp-knitted fabric factories.
Funder
National Key Research and Development Project
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献