Topographical Study of Low Temperature Plasma Treated Flax Fibers

Author:

Wong K.K.1,Tao X.M.1,Yuen C.W.M.1,Yeung K.W.1

Affiliation:

1. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Abstract

A comprehensive study of morphological and topographical changes in low tempera ture plasma treated flax fibers is reported. Time-series images of fiber surface appearance are examined by environmental scanning electron microscopy (ESEM). As the exposure time increases, the depth of the micropores etched by the plasma increases with increasing pore width. The surface fibrils remain on the surface at up to 40 minutes of oxygen plasma or 60 minutes of argon plasma exposure. The dominant fabric weight loss of linen during plasma treatment is mainly attributed to fiber surface etching. Fiber contraction is also observed during plasma treatment. The ESEM micrographs show a good correlation with the SEM micrographs. The depth of the etched pits induced by the argon and oxygen plasma is measured by atomic force microscopy (AFM). On the relatively smooth surface of an untreated flax fiber, the argon plasma creates pits of mainly submicrometer size (both depth and diameter), while the oxygen plasma creates pits of a few micrometers. Image processing techniques provide a quantitative description of the surface topography of plasma treated flax fibers, and the FFT power spectra describe periodic surface features. Changes in the surface roughness of the plasma etched flax fibers are quantified by RMS values.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3