On “how to start a fire”, or transverse forced-convection, hyperbaric laser chemical vapor deposition of fibers and textiles

Author:

Maxwell James L1,Webb Nicholas1,Bradshaw Douglas1,Black Marcie R2,Maskaly Karlene3,Chavez Craig A3,Espinoza Miguel1,Vessard Stuart3,Art Blair3,Johnson Scot4,Boman Mats5,Gananavelu S26

Affiliation:

1. Advanced Materials and Nanosystems Group, Dynetics, Inc., USA

2. Bandgap Engineering, Inc., USA

3. NEMISIS Team, Intelligence Analysis and Technology (IAT) Division, Los Alamos National Laboratory, USA

4. ENV-EDA Division, Los Alamos National Laboratory, USA

5. Department of Inorganic Chemistry, Uppsala University, Sweden

6. IfM, Louisiana Tech University, USA

Abstract

This work explores the transverse forced flow of precursor gases during hyperbaric pressure laser chemical vapor deposition (HP-LCVD). Axial and mass growth rates of carbon fibers are measured experimentally, and a numerical model is developed that provides fiber growth rates in both the mass-transport-limited (MTL) and kinetically limited (KL) regimes. It is found that the fiber’s transport-limited rate increases as the square root of the flow velocity, while simultaneously, the temperature drops with the inverse square root of the flow velocity. Growth is enhanced by forced flow so long as the reaction zone remains within the MTL regime; upon reaching a critical temperature and flow rate, however, fibers enter the KL regime, and the growth rate declines with rising flow rate. Molecular properties of the precursors employed and gas concentrations ultimately determine the range of the MTL and the locations of the critical temperature and flow rate. The growth rates of fibers can indeed be enhanced by transverse forced convection—to at least three times the zero-flow steady-state rate, provided an MTL regime exists. Complex three-dimensional structures may be grown from these fibers in a freeform manner, and the more rapidly such microstructures can be fabricated, the more practical HP-LCVD becomes for industrial use, including the fabrication of novel textiles.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3