Influence of the graft-copolymerized hydrophilic lignin content on the structure and mechanical properties of gel-spun poly(vinyl alcohol) composite fibers

Author:

Cheng Yu12,Lin Jiaxian12,Sun Xiaorui12,Duan Lianjie12,Zheng Yuanyuan12,Sun Xiaoxia12,Li Xian12,Lu Chunhong12ORCID

Affiliation:

1. Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, China

2. College of Textiles, Donghua University, China

Abstract

Lignin is a cost-effective, biobased filler for the fabrication of high-performance poly(vinyl alcohol) (PVA) composite fibers that increases fiber performance and sustainability. However, amorphous and hydrophobic lignin often have poor compatibility with semi-crystalline and hydrophilic PVA matrixes. Moreover, aggregation of the filler at high content could occur to impede the effectiveness of lignin as a reinforcing filler. To address these issues, modified organosolv lignin (OL24) with hydrophilicity was obtained from the graft copolymerization of organosolv lignin and acrylic acid monomers after 24 h of reaction and later used as a reinforcing filler at different ratios of 0%, 5%, 10%, 20% and 30% in PVA to achieve composite fibers with better compatibility between the filler and matrix, and enhanced sustainability. The influence of the graft-copolymerized hydrophilic lignin content on the structure and mechanical performance of gel-spun PVA composite fibers was fundamentally investigated. The results showed that 10% OL24/PVA fiber had outstanding mechanical properties with an average tenacity of 7.8 cN/dtex (tensile strength of 1.02 GPa), average specific modulus of 143.21 cN/dtex (Young’s modulus of 18.62 GPa) and toughness of 20.90 J/g. It was concluded that the higher orientation, larger crystal size and stronger hydrogen bonding in the composite fiber structure contributed to the good fiber mechanical performance. These results offer technical support for the mechanical performance optimization of lignin-reinforced polymeric high-performance fibers.

Funder

Shanghai Sailing Program, China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3