Affiliation:
1. School of Textile Science and Engineering, Xi’an Polytechnic University, China
2. Shaanxi Textile Science Institute, China
Abstract
In this study, a lignin/polyacrylonitrile (PAN) composite nanofiber membrane is prepared by electrospinning and used as the precursor to prepare flexible carbon nanofibers (CNFs) through pre-oxidation and carbonization. The micromorphology, crystal structure, pore size distribution and specific surface area of the CNFs are characterized by field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and specific surface adsorption analysis, respectively. The electrochemical properties of the CNF membrane are also investigated by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy due to its potential application in binder-free electrode materials for supercapacitors. We successfully prepared flexible CNFs with an average diameter of about 539 nm and a specific surface area of 1053.78 m2/g when the mass ratio of lignin to PAN was 9:1 in a solution concentration of 28 wt%. The CNFs are loaded onto nickel foam to prepare the electrode materials for supercapacitors without a binder. When the current density is 0.5 A/g, the specific capacitance could be up to 201.27 F/g and the equivalent series resistance is only 0.57 Ω, which shows an excellent electrochemical performance. This study not only provides a theoretical basis for the high-value utilization of lignin and the preparation of flexible lignin/PAN-based CNFs, but also provides a new type of environmentally friendly raw material for the electrodes of supercapacitors and could be helpful to alleviate the energy crisis and environmental pollution.
Funder
Innovation Talent Promotion Program of Shaanxi, China
Innovation Capability Support Plan of Shannxi, China
the National Natural Science Foundation of China
Special Funding for Postdoctoral Innovation Project in Shandong Province
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献