Objective Rating of Seam Pucker Using Neural Networks

Author:

Park Chang Kyu1,Kang Tae Jin1

Affiliation:

1. Department of Fiber and Polymer Science, Seoul National University, Seoul 151–742, Korea

Abstract

An objective method of evaluating seam pucker in woven fabrics during garment manufacturing is studied using artificial neural networks. An automatic sewing machine and new measurement system with a laser sensor are presented. For objective evaluation of seam pucker using aatcc standards, two artificial neural networks are constructed from pattern recognition and learning. An error backpropagation model is adopted for the neural networks. The puckered shape of a sewn fabric is converted into the numerical data on three-dimensional coordinates by the laser scanning system. Measurement data in a parallel direction with the seam line are transformed into power spectra on the frequency domain using fast Fourier transformation. The power spectra then generate the specified patterns for neural networks. Finally, the neural networks evaluate seam pucker the same way as the aatcc rating of well trained human experts.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3