Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine

Author:

Zhou Zhiyu1ORCID,Liu Mingxuan1,Deng Wenxiong1,Wang Yaming2,Zhu Zefei3

Affiliation:

1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, China

2. Lishui University, Lishui, China

3. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China

Abstract

This paper proposes a new method that uses Alexnet with ImageNet transfer learning as the feature extractor and optimized and regularized extreme learning as the classifier. We keep the first five convolutional layers and the first two fully connected layers of Alexnet, and then train the network. Then, the mutual information between each dimension of the feature and its category is calculated and sorted, and the feature with the highest ranking is selected for feature dimensionality reduction. The regularization penalty term is introduced to the extreme learning machine to control its algorithm complexity and solve the problem of overfitting. Finally, the Runge Kutta optimization algorithm is employed to ameliorate the hidden layer bias and input weight of the regularized extreme learning machine, and the optimized regularized extreme learning machine is used to classify the dimensionality-reduced clothing image traits. The test outcome illustrates that on some apparel classification with style (ACWS) datasets, the precision, recall, F1-score, and accuracy of the proposed algorithm are 93.06%, 93.17%, 92.82%, and 93.14%, respectively, which are better than those of other clothing image classification algorithms. The results verify that the raised algorithm significantly ameliorates the classification property of clothing image algorithms.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3