Histogram of Oriented Gradients with Cell Average Brightness for Human Detection

Author:

Wójcikowski Marek

Abstract

Abstract A modification of the descriptor in a human detector using Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) is presented. The proposed modification requires inserting the values of average cell brightness resulting in the increase of the descriptor length from 3780 to 3908 values, but it is easy to compute and instantly gives ≈ 25% improvement of the miss rate at 10‒4 False Positives Per Window (FPPW). The modification has been tested on two versions of HOG-based descriptors: the classic Dalal-Triggs and the modified one, where, instead of spatial Gaussian masks for blocks, an additional central cell has been used. The proposed modification is suitable for hardware implementations of HOG-based detectors, enabling an increase of the detection accuracy or resignation from the use of some hardware-unfriendly operations, such as a spatial Gaussian mask. The results of testing its influence on the brightness changes of test images are also presented. The descriptor may be used in sensor networks equipped with hardware acceleration of image processing to detect humans in the images.

Publisher

Walter de Gruyter GmbH

Reference21 articles.

1. Fast human detection using a cascade of histograms of oriented gradients Vision Pattern Recognit;Zhu;Proc IEEE Int Conf Comput,2006

2. Speeding Up HOG and LBP Features for Pedestrian Detection by Multiresolution Techniques th Symposium Advances in Visual Computing Las;Geismann;Proc Int USA,2010

3. A novel approach of analog fault classification using a Support Vector Machines classifier;Cui;Metrol Meas Syst,2010

4. Real - time video surveillance based on combining foreground extraction and human detection th Multimedia Modeling Conf Kyoto Japan;Zeng;Proc Int,2008

5. Fast human detection using a novel boosted cascading structure with meta stages;Chen;IEEE Trans Image Process,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3