Affiliation:
1. Department of Psychology, Yonsei University, Seoul, Republic of Korea
Abstract
Although most people are not aware of it, bias can occur when interpreting graphs. Within-the-bar bias describes a misinterpretation of the distribution of data underlying bar graphs that indicate an average or where the average estimation point moves inside the bar when the average of several graphs is estimated. This study proposes and tests two methods based on information processing to reduce within-the-bar bias. The first method facilitates bottom-up processing by changing various graph features, such as presenting confidence intervals, placing boundaries around the graph, and showing cumulative bars with different tones. The second method facilitates top-down processing by instructing participants to estimate the mean based on a dot at the end of each bar. Testing of the first method showed that cumulative bars reduced bias, but the other methods did not. The second method was found to reduce bias. Overall, our results demonstrate that the accurate interpretation of bar graphs can be facilitated through the manipulation of specific graph features and instruction.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献