Direction of Apparent Motion During Smooth Pursuit Is Determined Using a Mixture of Retinal and Objective Proximities

Author:

Terao Masahiko1ORCID,Nishida Shin’ya2

Affiliation:

1. The research Institute for Time Studies, Yamaguchi University

2. NTT Communication Science Laboratories, Kyoto, Japan; Graduate School of Informatics, Kyoto University

Abstract

Many studies have investigated various effects of smooth pursuit on visual motion processing, especially the effects related to the additional retinal shifts produced by eye movement. In this article, we show that the perception of apparent motion during smooth pursuit is determined by the interelement proximity in retinal coordinates and also by the proximity in objective world coordinates. In Experiment 1, we investigated the perceived direction of the two-frame apparent motion of a square-wave grating with various displacement sizes under fixation and pursuit viewing conditions. The retinal and objective displacements between the two frames agreed with each other under the fixation condition. However, the displacements differed by 180 degrees in terms of phase shift, under the pursuit condition. The proportions of the reported motion direction between the two viewing conditions did not coincide when they were plotted as a function of either the retinal displacement or of the objective displacement; however, they did coincide when plotted as a function of a mixture of the two. The result from Experiment 2 showed that the perceived jump size of the apparent motion was also dependent on both retinal and objective displacements. Our findings suggest that the detection of the apparent motion during smooth pursuit considers the retinal proximity and also the objective proximity. This mechanism may assist with the selection of a motion path that is more likely to occur in the real world and, therefore, be useful for ensuring perceptual stability during smooth pursuit.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3