Hierarchical mixture models for longitudinal immunologic data with heterogeneity, non-normality, and missingness

Author:

Huang Yangxin1,Chen Jiaqing2,Yin Ping3

Affiliation:

1. Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA

2. Department of Statistics, College of Science, Wuhan University of Technology, Wuhan, Hubei, P.R. China

3. Department of Epidemiology and Biostatistics, School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China

Abstract

It is a common practice to analyze longitudinal data frequently arisen in medical studies using various mixed-effects models in the literature. However, the following issues may standout in longitudinal data analysis: (i) In clinical practice, the profile of each subject’s response from a longitudinal study may follow a “broken stick” like trajectory, indicating multiple phases of increase, decline and/or stable in response. Such multiple phases (with changepoints) may be an important indicator to help quantify treatment effect and improve management of patient care. To estimate changepoints, the various mixed-effects models become a challenge due to complicated structures of model formulations; (ii) an assumption of homogeneous population for models may be unrealistically obscuring important features of between-subject and within-subject variations; (iii) normality assumption for model errors may not always give robust and reliable results, in particular, if the data exhibit non-normality; and (iv) the response may be missing and the missingness may be non-ignorable. In the literature, there has been considerable interest in accommodating heterogeneity, non-normality or missingness in such models. However, there has been relatively little work concerning all of these features simultaneously. There is a need to fill up this gap as longitudinal data do often have these characteristics. In this article, our objectives are to study simultaneous impact of these data features by developing a Bayesian mixture modeling approach-based Finite Mixture of Changepoint (piecewise) Mixed-Effects (FMCME) models with skew distributions, allowing estimates of both model parameters and class membership probabilities at population and individual levels. Simulation studies are conducted to assess the performance of the proposed method, and an AIDS clinical data example is analyzed to demonstrate the proposed methodologies and to compare modeling results of potential mixture models under different scenarios.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3