Bayesian joint analysis of heterogeneous- and skewed-longitudinal data and a binary outcome, with application to AIDS clinical studies

Author:

Lu Xiaosun1,Huang Yangxin2,Chen Jiaqing3,Zhou Rong1,Yu Shuli1,Yin Ping4

Affiliation:

1. Department of Biostatistics, Medpace Inc., Cincinnati, OH, USA

2. Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA

3. Department of Statistics, Wuhan University of Technology, Wuhan, Hubei, P.R. China

4. Department of Epidemiology and Biostatistics, School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China

Abstract

In medical studies, heterogeneous- and skewed-longitudinal data with mis-measured covariates are often observed together with a clinically important binary outcome. A finite mixture of joint models is currently used to fit heterogeneous-longitudinal data and binary outcome, in which these two parts are connected by the individual latent class membership. The skew distributions, such as skew-normal and skew-t, have shown beneficial in dealing with asymmetric data in various applications in literature. However, there has been relatively few studies concerning joint modeling of heterogeneous- and skewed-longitudinal data and a binary outcome. In this article, we propose a joint model in which a flexible finite mixture of nonlinear mixed-effects models with skew distributions is connected with binary logistic model by a latent class membership indicator. Simulation studies are conducted to assess the performance of the proposed models and method, and a real example from an AIDS clinical trial study illustrates the methodology by modeling the viral dynamics to compare potential models with different distribution specifications; the analysis results are reported.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3