Analysis of case-cohort designs with binary outcomes: Improving efficiency using whole-cohort auxiliary information

Author:

Noma Hisashi12,Tanaka Shiro3

Affiliation:

1. Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan

2. Department of Statistical Science, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, Tokyo, Japan

3. Department of Pharmacoepidemiology, Kyoto University School of Public Health, Kyoto, Japan

Abstract

The case-cohort design has been widely adopted for reducing the cost of covariate measurements in large prospective cohort studies. Under the case-cohort design, complete covariate data are collected only on randomly sampled cases and a subcohort randomly selected from the whole cohort. For the analysis of case-cohort studies with binary outcomes, logistic regression analysis has been routinely used. However, in many applications, certain covariates are readily measured on all samples from the whole cohort, and the case-cohort design may be regarded as a two-phase sampling design. Using this auxiliary covariate information, estimators for the regression parameters can be substantially improved. In this article, we discuss the theoretical basis of the case-cohort design derived from the formulation of the two-phase design and the improved estimators using whole-cohort auxiliary variable information. In particular, we show that the sampling scheme of the case-cohort design is substantially equivalent to that of conventional two-phase case-control studies (also known as two-stage case-control studies for epidemiologists), i.e., the methodologies of two-phase case-control studies can be directly applied to case-cohort data. Under this framework, we review and apply the following improved estimators to the case-cohort design with binary outcomes: (i) weighted estimators, (ii) a semiparametric maximum likelihood estimator, and (iii) a multiple imputation estimator. In addition, based on the framework of the two-phase design, we can obtain risk ratio and risk difference estimators without the rare-disease assumption. We illustrate these methodologies via simulations and the National Wilms Tumor Study data.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3