On the use of multiple imputation to address data missing by design as well as unintended missing data in case-cohort studies with a binary endpoint

Author:

Middleton Melissa,Nguyen Cattram,Carlin John B.,Moreno-Betancur Margarita,Lee Katherine J.

Abstract

Abstract Background Case-cohort studies are conducted within cohort studies, with the defining feature that collection of exposure data is limited to a subset of the cohort, leading to a large proportion of missing data by design. Standard analysis uses inverse probability weighting (IPW) to address this intended missing data, but little research has been conducted into how best to perform analysis when there is also unintended missingness. Multiple imputation (MI) has become a default standard for handling unintended missingness and is typically used in combination with IPW to handle the intended missingness due to the case-control sampling. Alternatively, MI could be used to handle both the intended and unintended missingness. While the performance of an MI-only approach has been investigated in the context of a case-cohort study with a time-to-event outcome, it is unclear how this approach performs with a binary outcome. Methods We conducted a simulation study to assess and compare the performance of approaches using only MI, only IPW, and a combination of MI and IPW, for handling intended and unintended missingness in the case-cohort setting. We also applied the approaches to a case study. Results Our results show that the combined approach is approximately unbiased for estimation of the exposure effect when the sample size is large, and was the least biased with small sample sizes, while MI-only and IPW-only exhibited larger biases in both sample size settings. Conclusions These findings suggest that a combined MI/IPW approach should be preferred to handle intended and unintended missing data in case-cohort studies with binary outcomes.

Funder

National Health and Medical Research Council

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3